Prosím počkejte chvíli...
stdClass Object
(
    [nazev] => Centrální laboratoře VŠCHT Praha
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => UOa3DCAUaJJ2C3MuUhI9eR1T9ZNzenZfHPQN4wupOE8
    [ga_account] => UA-10822215-3
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 
    [pozadi1] => 
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'clab.vscht.cz'
    [newurl_jazyk] => 'cs'
    [newurl_akce] => '[cs]'
    [newurl_iduzel] => 
    [newurl_path] => 1/20076/20077
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 20077
    [platne_od] => 26.05.2023 09:28:00
    [zmeneno_cas] => 26.05.2023 09:28:37.644961
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 24781
    [cms_time] => 1711700269
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [logo_mobile_href] => /
            [logo_mobile] => 
            [google_search] => 001523547858480163194:u-cbn29rzve
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Hledání
            [mobile_over_nadpis_jazyky] => Jazyky
            [mobile_over_nadpis_login] => Přihlášení
            [menu_home] => Domovská stránka
            [paticka_budova_a_nadpis] => BUDOVA A
            [paticka_budova_a_popis] => Rektorát, oddělení komunikace, pedagogické oddělení, děkanát FCHT, centrum informačních služeb
            [paticka_budova_b_nadpis] => BUDOVA B
            [paticka_budova_b_popis] => Věda a výzkum, děkanát FTOP, děkanát FPBT, děkanát FCHI, výpočetní centrum, zahraniční oddělení, kvestor
            [paticka_budova_c_nadpis] => BUDOVA C
            [paticka_budova_c_popis] => Dětský koutek Zkumavka, praktický lékař, katedra ekonomiky a managementu, ústav matematiky
            [paticka_budova_1_nadpis] => NÁRODNÍ TECHNICKÁ KNIHOVNA
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => STUDENTSKÁ KAVÁRNA CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
[paticka_odkaz_mail] => mailto:Josef.Chudoba@vscht.cz [zobraz_desktop_verzi] => zobrazit plnou verzi [social_fb_title] => [social_tw_title] => [social_yt_title] => [drobecky] => Nacházíte se: VŠCHT PrahaCentrální laboratoře [aktualizovano] => Aktualizováno [autor] => Autor [stahnout] => Stáhnout [more_info] => více informací [paticka_mapa_odkaz] => [zobraz_mobilni_verzi] => zobrazit mobilní verzi [nepodporovany_prohlizec] => Ve Vašem prohlížeči se nemusí vše zobrazit správně. Pro lepší zážitek použijte jiný. [preloader] => Prosím počkejte chvíli... [social_in_odkaz] => [hledani_nadpis] => hledání [hledani_nenalezeno] => Nenalezeno... [hledani_vyhledat_google] => vyhledat pomocí Google [social_li_odkaz] => ) [poduzel] => stdClass Object ( [20079] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20083] => stdClass Object ( [obsah] => [iduzel] => 20083 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20084] => stdClass Object ( [obsah] => [iduzel] => 20084 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20085] => stdClass Object ( [obsah] => [iduzel] => 20085 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20079 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20080] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [25142] => stdClass Object ( [nazev] => Laboratoř atomové absorpční spektrometrie [seo_title] => Laboratoř atomové absorpční spektrometrie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Analýzy

V laboratoři se provádí stanovení prakticky všech kovových prvků ve vzorcích anorganického popřípadě i organického charakteru metodami atomové spektrometrie, tj. atomovou absorpční spektrometrií (s plamenovou i elektrotermickou atomizací).

Laboratoř provádí stanovení prvků přítomných v koncentracích 100 – 10–7% a nižších metodou atomové absorpční spektrometrie (AAS) s plamenovou i bezplamennou atomizací. Vzorky jsou měřeny převážně jako roztoky ve vodném i organickém prostředí (metanol, etanol), v omezeném množství je možné provádět i základní rozklady. Stanovení rtuti je možno provést přímo i v pevném vzorku.

V laboratoři se provádí měření těchto prvků (mez detekce v mg/l pro plamenovou techniku atomizace):

 Ag (0.03)

 Al (0.4)

 As (0.6)

 Au (0.1)

 

 

 B (8)

 Ba (0.2)

 Be (0.02)

 Bi (0.2)

 

 

Ca (0.01)

 Cd (0.005)

 Co (0.05)

 Cr (0.06)

 Cs (0.04)

 Cu (0.04)

 Fe (0.05)

 Ga (0.7)

 Ge (1.5)

 Hg (5)

 In (0.2)

 

 K (0.01)

 La (1)

 Li (0.02)

 Mg (0.003)

 Mn (0.02)

 Mo (0.3)

 Na (0.003)

 Ni (0.05)

 Pb (0.1)

 Pd (0.1)

 Pt (1.5)

 

 Rb (0.03)

 Rh (0.15)

 Sb (0.3)

 Se (0.5)

 Si (1.0)

 

 Sn (1)

 Sr (0.05)

 Ta (11)

 Ti (1.5)

 

 

 Tl (0.3)

 V (0.75)

 W (6)

 Zn (0.05)

 

 

 

U některých prvků je možné dosáhnout nižších mezí detekce s použitím AAS s elektrotermickou atomizací (Hg) a AAS s hydridovou technikou (As, Se, Sb). Tato stanovení musí být předběžně konzultována.

 Další aktivity

  • konzultační činnost
  • aplikace pro potřeby výzkumu a monitorování v oblastech moderních technologií, zdravotnictví, životního prostředí

Využití v monitoringu životního prostředí:

  • Analýza srážkových, pitných a povrchových vod, odpadních vod a výluhů ze skládek
  • Kvalita ovzduší, analýzy prašných aerosolů a městského prachu
  • Příprava testovacích materiálů, testování odběrových systémů, metodický výzkum prvkového zastoupení v jemných frakcích aerosolů (As, Cd, Cr, Mn, Ni, Pb).

[iduzel] => 25142 [canonical_url] => //clab.vscht.cz/aas [skupina_www] => Array ( ) [url] => /aas [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27634] => stdClass Object ( [nazev] => Laboratoř NMR spektroskopie [seo_title] => NMR [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř NMR spektroskopie je součástí Centrálních laboratoří na Vysoké škole chemicko-technologické v Praze. Jejím hlavním posláním je servisní měření NMR spekter vzorků dodaných ze školních laboratoří, ale i z pracovišť mimo školu. Kromě základních servisních služeb je zde možné provést také nestandardní nebo složitější experimenty, včetně jejich vyhodnocení. Současně s  tím v této laboratoři probíhá vědecká a pedagogická činnost, která zahrnuje úzkou spolupráci s dalšími pracovišti na VŠCHT.

Nejširší využití NMR spektroskopie nalézá v charakterizaci látek, převážně organického původu. Laboratoř NMR se kromě určení chemické struktury produktů a meziproduktů reakcí zabývá také stanovením zastoupení složek ve směsích, měřením kinetiky a  termodynamiky chemických dějů, kvalitativním posouzením i kvantitativním výpočtem geometrie molekul a dynamikou molekul.

S rozvojem pokročilých technik se NMR spektroskopie stala významnou metodou pro výpočet struktury biomakromolekul – proteinů a nukleových kyselin. V současnosti řešíme prostorové struktury vybraných proteinů Masonova-Pfizerova opičího retroviru.

Ve srovnání s jinými analytickými metodami je NMR spektroskopie méně citlivou metodou, nejedná se o stopovou analýzu. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít

[iduzel] => 27634 [canonical_url] => //clab.vscht.cz/nmr [skupina_www] => Array ( ) [url] => /nmr [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27362] => stdClass Object ( [nazev] => Laboratoř analýzy povrchů [seo_title] => Laboratoř analýzy povrchů [seo_desc] => [autor] => [autor_email] => [obsah] =>

K měření analýz povrchu máme k dispozici přístroj ESCAProbeP vyrobený firmou Omicron Nanotechnology Ltd. V roce 2004 Přístroj je vybaven monochromátorem, dvěma typy iontových děl, detekcí elektronů s 5 channeltrony, možností kompenzace nabíjení vzorku pomocí zdroje nízkoenergetických elektronů, zdrojem UV záření pro analýzu valenčních stavů, fokusovatelným zdrojem elektronů a detektorem sekundárních elektronů.

Nejčastěji řešené problematiky:

  • Oxidační stavy katalyzátorů
  • Stavy povrchů na organických materiálech
  • Korozní vrstvy
  • Vrstvy vyvíjené pro chemické senzory
  • Materiály pro elektroniku s využitím možností měření koncentračních profilů
[iduzel] => 27362 [canonical_url] => //clab.vscht.cz/lap [skupina_www] => Array ( ) [url] => /lap [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27315] => stdClass Object ( [nazev] => Laboratoř molekulové spektroskopie [seo_title] => Laboratoř molekulové spektroskopie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Vítáme Vás na stránkách Laboratoře molekulové spektroskopie Vysoké školy chemicko-technologické v Praze. Laboratoř molekulové spektroskopie je součástí Centrálních laboratoří VŠCHT, které jsou společným servisním a vědeckým pracovištěm všech fakult VŠCHT.

Laboratoř molekulové spektroskopie provádí identifikaci neznámých látek, určování funkčních skupin, ověřování čistoty látek a stanovení jejich obsahu ve směsích. Laboratoř využívá infračervenou a Ramanovu spektrometrii v mnoha oborech, a to ve strukturní analýze organických a anorganických materiálů, analýze cizorodých látek v životním prostředí, analýze spalných plynů, polymerů, sorbentů, plnidel a lepidel papíru a pryskyřic, lepidel pro dentální protézy, analýze barviv, plnidel a emailů využívaných při restaurování uměleckých památek a historických děl. Infračervené spektrometrie je využíváno též v analýze potravin (např. stanovení cukrů v nápojích, ethanolu v alkoholických nápojích, analýza vín a medů), v medicíně (močové konkrementy), v ekologii (např. stanovení ropných látek ve vzduchu a v zeminách, respirativního křemene v ovzduší, detekce alergenních pylů) a v průmyslové analýze (např. stanovení aditiv v olejích).

Vědecká činnost labotatoře je zaměřena na vypracovávání metodik měření, kombinaci výsledků získaných různými technikami měření, které vedou ke spolehlivějšímu řešení analytického problému.

[urlnadstranka] => [iduzel] => 27315 [canonical_url] => [skupina_www] => Array ( ) [url] => /ir [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27275] => stdClass Object ( [nazev] => Laboratoř transmisní elektronové mikroskopie [seo_title] => Laboratoř transmisní elektronové mikroskopie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř je vybavena přístrojem EFTEM Jeol 2200 FS. Jedná se o transmisní elektronový mikroskop vybavený energiovým filtrem umožňuje pracovat při urychlovacích napětích do 200 kV. Přístroj je vybaven univerzálně a je proto vhodný k pozorování jak materiálových tak biologických vzorků.

[iduzel] => 27275 [canonical_url] => //clab.vscht.cz/tem [skupina_www] => Array ( ) [url] => /tem [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [25225] => stdClass Object ( [nazev] => Laboratoř termické analýzy [seo_title] => Laboratoř termické analýzy [seo_desc] => [autor] => [autor_email] => [obsah] =>

O termické analýze

Metody termické analýzy provozované v laboratoři termické analýzy umožňují testovat/ověřit:

  • procesy probíhající v tepelně namáhaných materiálech, které jsou spojeny se změnou hmotnosti (sušení, dehydratace, oxidace, …)
  • tepelné zabarvení procesů v tepelně namáhaných materiálech (tání, krystalizace, skelný přechod,…)
  • vliv experimentálních podmínek (rychlost ohřevu, atmosféra) na průběh dějů v tepelně namáhaných materiálech
  • tepelnou stálost materiálů (rozklad)
  • případně hledat vhodný postup pro tepelné zpracování široké škály materiálů

 

Principy metod

Termogravimetrická analýza TG

Vzorek analyzované látky se kontrolovaně zahřívá/chladí (neizotermně nebo izotermně) za současného vážení a zaznamenává se průběh hmotnosti v závislosti na teplotě a čase.

Diferenční termická analýza DTA

Vzorek analyzované látky se zahřívá/chladí kontrolovanou rychlostí současně s referencí, která se během ohřevu nemění. Zaznamenává se teplotní rozdíl vzniklý mezi vzorkem a referencí, které vznikají v důsledku dějů probíhajících v analyzovaném vzorku. Teplotní rozdíl zaznamenaný v závislosti na teplotě nebo čase vypovídá o tepelném zabarvení dějů proběhlých v analyzovaném vzorku při jeho ohřevu/chlazení (děje exotermní/endotermní).

Diferenční skenovací kalorimetrie DSC

DSC zařízení zaznamenává tepelné efekty v závislosti na teplotě, které vznikají při fázovém přechodu nebo při chemické reakci. Měřená data jsou prostřednictvím vhodné kalibrace softwarově převáděna z jednotky mikrovolt na miliwatt. Výsledky vyjadřují spotřebu nebo výdej energie během reakcí probíhající v analyzovaném vzorku.

Hmotnostní spektrometrie MS ve spojení s metodami termické analýzy

Hmotnostní spektrometr kvadrupólového typu umožňuje detekovat vybrané hmoty do 300 amu, které jsou obsaženy v plynných zplodinách, které vznikají během termické analýzy vzorků.

Infračervená spektroskopie FTIR ve spojení s termogravimetrickou metodou

V laboratoři provozovaný infračervený spektrometr umožňuje měřit spektra plynných zplodin, které vzniknou při termogravimetrické analýze vzorků.

[iduzel] => 25225 [canonical_url] => //clab.vscht.cz/ta [skupina_www] => Array ( ) [url] => /ta [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [21297] => stdClass Object ( [nazev] => Centrální laboratoře [seo_title] => Centrální laboratoře [seo_desc] => [autor] => [autor_email] => [obsah] =>

 

Centrální laboratoře byly vytvořeny jako pracoviště zabezpečující podporu vědecko-výzkumné a pedagogické činnosti fakult Vysoké školy chemicko-technologické v Praze. Jejich činnost sahá od servisních analytických měření až po spolupráci při řešení vědecko-výzkumných projektů, nezanedbatelný je i přínos pracovníků jednotlivých laboratoří pří výchově studentů. V současnosti sdružují Centrální laboratoře devět pracovišť vybavených pro analýzy nejrůznějších typů látek a materiálů.  Na webových stránkách naleznete stručné informace o jednotlivých laboratořích, jejich personálním obsazení, přístrojovém vybavení a možnostech spolupráce. Rádi uvítáme jakékoliv podněty, které by mohly vést ke zkvalitnění spolupráce a  poskytovaných analýz.

prof. Ing. Richard Hrabal, CSc.,  vedoucí Centrálních laboratoří

 Laboratoř NMR spektroskopie

      přízemí budova A, dveře 42, tel. 220 443 805

      vedoucí: prof. Ing. Richard Hrabal, CSc. (richard.hrabal@vscht.cz)

Laboratoř molekulové spektroskopie (IR a Ramanova spektroskopie)

       3. n.p. budova A, dveře 310b, tel. 220 444 137

      vedoucí: Ing. Ladislav Lapčák (Ladislav.Lapcak@vscht.cz)

Laboratoř rentgenové difraktometrie a spektrometrie

       3. n.p. budova A, dveře P03, tel. 220 444 201

      suterén budova A, dveře S38, tel. 220 445 023, 5024

      vedoucí: RNDr. Jaroslav Maixner, CSc. (jaroslav.maixner@vscht.cz, tel. 730 809 852)

 Laboratoř hmotnostní spektrometrie

       suterén budova A, dveře S08, tel. 220 443 812

      vedoucí: Ing. Josef Chudoba, Ph.D. (josef.chudoba@vscht.cz)

 Laboratoř atomové absorpční spektrometrie

       4. n.p. budova A, dveře 406, tel. 220 443 813

      vedoucí: Ing. Dana Pokorná (dana.pokorna@vscht.cz)

 Laboratoř organické elementární analýzy

       2. n.p. budova A, dveře 275, tel. 220 443 810

      vedoucí: Ing. Petr Baroš (petr.baros@vscht.cz)

 Laboratoř termické analýzy

       suterén budova B, dveře  S28a, tel. 220 443 839

      vedoucí: Ing. Jakub Havlín (jakub.havlin@vscht.cz)

 Laboratoř analýzy povrchů

       suterén budova B, dveře S12, tel. 220 443 073

      vedoucí:  doc. Ing. Petr Sajdl, CSc. (petr.sajdl@vscht.cz)

Laboratoř transmisní elektronové mikroskopie

      přízemí budova A, dveře 49, tel. 220 442 042

      vedoucí: Ing. Michalcová Alena, Ph.D. (alena.michalcova@vscht.cz)

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 21297 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [21841] => stdClass Object ( [nazev] => Laboratoř hmotnostní spektrometrie [seo_title] => hmotnostní spektrometrie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř provádí měření hmotnostních spekter organických sloučenin a směsí organických látek s využitím separační techniky plynové (GC) a reverzní kapalinové (RP-HPLC) chromatografie.

Dostupné ionizační techniky

GC/MS, přímý vstup do zdroje spektrometru (sonda, batch inlet):

  • elektronová ionizace (EI+ 70 eV)
  •  chemická ionizace (CI) - reakční plyn methan

LC/MS, FIA (Flow Injection Analysis), RP-HPLC

  • elektrosprejová ionizace (ESI)
  • atmosferická chemická ionizace (APCI)

 

Měření hmotnostních spekter

  • nízké (jednotkové) rozlišení
  • vysoké rozlišení – přesnost m/z  lepší než 5 ppm; 
    (cca 1-2  ppm při použití Lock Mass)
  • ESI, APCI – možnost provedení MSn (vícenásobná MS) měření spekter
  •  EI+ 70 eV - možnost provedení  MS2 měření spekter

Maximální rozsah hmotností při měření hmotnostních spekter

  • EI + 70 eV, CI:  cca 1000 Da - limitováno stabilitou analyzované sloučeniny při převodu do parní fáze
  • ESI, APCI:   4000 Da (uvedeno pro jednonásobně nabité ionty)

Typy analýz

  • potvrzení molekulové hmotnosti (návrh nebo potvrzení elementárního složení)
  • charakterizace struktury molekuly – MS/MS experimenty, EI+ 70eV
  • analýza směsí organických látek (GC/MS)
  • analýza směsí organických látek (RP HPLC/MS, RP HPLC/UV-DAD) – po dohodě
  • kvantitativní analýzy, screening polutantů v komplexních matricích – po dohodě
  • vývoj GC/MS a LC/MS metod (po dohodě), včetně prekoncentračních technik

 

Výsledky analýz

Výsledky analýz jsou obvykle zasílány na e-mail zadavatele v elektronické formě (hmotnostní spektra a další informace ve formátu pdf popř. vloženy ve formě obrázkového souboru (jpeg, meta file atd.) do souboru MS Word nebo MS Excel. Datové soubory včetně přístrojových dat  jsou v laboratoři archivovány obvykle po dobu 3 let, pro individuální vyhodnocování jsou přístrojová data poskytována po dohodě.

 

Speciální analýzy

Analýzy VOC (těkavých organických látek) v ovzduší a plynech

Analýzy VOC emitovaných z materiálů 

k dispozici on-line spojení kanystrový systém - GC/MS a tepelná desorpce (TD) – GC/MS

  • odběr vzorků do Tedlarových vaků
  • odběr vzorků na tepelně desorbované trubičky (např. TENAX)
  • odběr vzorků na rozpouštědlem desorbované trubičky (např. ORBO)
  • odběr vzorků na speciální media (např. DNPH)
  • odběr vzorků do kanystrů

originál

 originál

[iduzel] => 21841 [canonical_url] => //clab.vscht.cz/ms [skupina_www] => Array ( ) [url] => /ms [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [25038] => stdClass Object ( [nazev] => Laboratoř organické elementární analýzy [seo_title] => Laboratoř OEA [seo_desc] => [autor] => [autor_email] => [obsah] =>

Typy analýz a jejich omezení

Laboratoř se zabývá stanovením obsahu (hm. %) jednotlivých prvků zejména C, H, N, S, Cl, I, Br, P v dodaných pevných či kapalných vzorcích. Všechny metody, které používáme, jsou založeny na spálení vzorku v proudu kyslíku za vysoké teploty. Vzniklé spaliny jsou pak různými metodami detekovány.
Tyto metody jsou vhodné jak pro čisté organické látky tak i pro vzorky půd, písků, paliv různého původu, rostlinných materiálů a některé anorganické vzorky apod.
Vždy dojde ke spálení vzorku, tedy analýza je desktruktivní.

Jednotlivé typy analýz

Stanovení obsahu C, H, N, S

Pro stanovení obsahu C, H, N, S je používán přístroj Elementar Vario Cube s TCD detekcí, resp. IR detektorem. Toto uspořádání umožňuje stanovení i stopových (pod 100 ppm) množství síry z jedné navážky.
Princip metody:
Základní princip kvantitativního stanovení CHNS je spálení vzorku (organického a mnohých anorganických) pevného i kapalného v proudu kyslíku za vysokých teplot (až 1200°C). Plynné produkty spálení (N2, CO2, H2O a SO2) jsou vyčištěny, odděleny na jednotlivé složky a analyzovány na TCD detektoru.
Omezení:
Obsahuje-li vzorek fluor, nelze u něj stanovit obsah síry a pro tyto vzorky se používá přístroj Elementar EL III, kde je výsledkem obsah C, H, N, S.

Stanovení stopových a semi-stopových obsahů halogenů a síry

Vybavení laboratoře umožňuje i stanovení velmi nízkých obsahů halogenů ve vzorku, kromě fluoru, a velmi nízkých obsahů síry ve vzorcích. Tyto analýzy se provádějí na přístroji Mitsubishi TOX 100.
Princip metody:
Stanovení nízkých obsahů spalitelných halogenů, zejména chloru:
      Vzorek je spálen v atmosféře kyslík/argon. Vzniklý HCl je veden do titrační cely, kde je       automaticky titrován Ag+, které jsou coulometricky generovány. 

Stanovení nízkých obsahů spalitelné síry:
      Vzorek je spálen v atmosféře kyslík/argon. Vzniklý SO2 je veden do titrační cely, kde je       automaticky titrován I3-.
Omezení:
Stanovení stopového obsahu síry ve vzorku vyžaduje, aby vzorek neobsahoval dusík a halogeny.
Stanovení stopového obsahu halogenů (kromě fluoru) vyžaduje, aby vzorek obsahoval pod 10% S i pod 10% N. Z tohoto omezení vyplývá, že u neznámého vzorku je třeba jako první krok provést analýzu C,H,N,S.

Stanovení obsahu Cl, I, Br

Pro stanovení obsahu Cl, I, Br jsou použity klasické argentometrické analýzy upravené pro malé navážky vzorků. Navážky na jednotlivé analýzy se liší podle předpokládaného obsahu stanovovaného vzorku.
Princip metody:
Vzorek je spálen v Erlenmayerově baňce v nadbytku kyslíku. Spaliny se absorbují do pracovního roztoku H2O2, který se pak kvantitativně převede do titrační baňky. Obsah halogenů se stanoví potenciometrickou titrací za použití odměrného roztoku dusičnanu stříbrného.
Omezení:
Vzorek musí být pevná a snadno spalitelná látka. Je-li obsah stanovovaného prvku do 5%, je potřeba, abyste nám dodali minimálně 100 mg vzorku na jednu analýzu. V případě, že očekávaný obsah prvku je vyšší než 5%, postačuje 20 mg vzorku na jednu analýzu.

 Stanovení obsahu fosforu

Fosfor se stanovuje upravenou komplexometrickou odměrnou metodou.
Princip metody:
Vzorek je spálen v atmosféře kyslíku, mineralizován a nepřímou komplexometrickou titrací stanoven obsah fosforu.
Omezení:
Vzorek nesmí obsahovat kovy alkalických zemin. Ke stanovení nízkého obsahu fosforu je potřeba alespoň 800 mg vzorku na jednu analýzu.

Výsledky


Zákazník by měl mít na paměti, že výsledky organické elementární analýzy jsou též ovlivněny vlhkostí analyzovaného vzorku i přítomností zbytkových rozpouštědel.
Výsledky jsou zákazníkovi zasílány elektronickou poštou, na vyžádání v písemné formě.

Stanovení obsahu C, H, N, S
 Obsahuje-li vzorek anorganický uhlík (CO32- nebo HCO3-) nebo anorganickou síru (zejména S2- , SO32-, HSO3- a některé SO42-, HSO4- ) pak za podmínek analýzy dojde i ke stanovení těchto prvků, nelze odlišit organicky vázané prvky od anorganicky vázaných.

[iduzel] => 25038 [canonical_url] => //clab.vscht.cz/oea [skupina_www] => Array ( ) [url] => /oea [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [24887] => stdClass Object ( [nazev] => Laboratoř rentgenové difraktometrie a spektrometrie [seo_title] => Laboratoř RTG [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř provádí stanovení fázového složení metodou XRD(X-Ray Diffraction) fázové analýzy spočívající v měření a vyhodnocování difrakčních záznamů a stanovení prvkového složení metodou XRF (X-Ray fluorescence) prvkové analýzy vzorků dodaných ze školních laboratoří, ale i z pracovišť mimo školu. Kromě základních servisních analýz je zde možné provést také nestandardní nebo složitější experimenty, včetně jejich vyhodnocení. Současně s tím v této laboratoři probíhá vědecká a pedagogická činnost, která zahrnuje úzkou spolupráci s dalšími pracovišti na VŠCHT či vědeckými pracovišti i mimo ČR.

Metoda rentgenové práškové difrakce (mineralogická analýza, prášková difrakce) je určena především na měření pevných vzorků (speciální oblastí je možnost studia transformací z pevné do kapalné fáze za vysokých teplot) a je schopna stanovit, zda je vzorek amorfní či krystalický. V případě krystalických vzorků je schopna stanovit přítomnost krystalických fází porovnáním naměřených dat (difraktogramy, powder patterns) s databází PDF-4+ (Powder diffraction file-hlavně anorganika), PDF-4/Organics(organika)

Nejširší využití XRD fázová analýza nalézá v charakterizaci pevných látek, a to jak anorganického, tak i organického původu. Laboratoř se zabývá všemi problémy chemie a chemické technologie mající souvislost s pevnou fází, reakcemi v   pevné fázi a heterogenními systémy. Poskytuje informace o průběhu reakce v pevné fázi, o kvalitativním a kvantitativním fázovém složení pevných látek, o krystalických modificích téže sloučeniny, o velikosti elementárních krystalitů(rozsah 1nm-500nm), o stupni krystalinity pevných látek, o strukturní dokonalosti, o textuře a struktuře krystalických materiálů částečně i polymerů. Speciální oblastí je řešení molekulové a krystalové struktury organických látek z monokrystalu či polykrystalického materiálu či vysokoteplotní studium materiálů v rozsahu teplot od 20-1400 oC.

RTG prášková difrakce se stala nepostradatelnou metodou ke studiu korozních procesů, syntézy a studia polovodičových a keramických materiálů, katalyzátoru a farmaceutických preparátů. V případě RTG práškové difrakce se nejedná se o stopovou analýzu, minimální stanovitelná koncentrace krystalické fáze je cca 0.1 hm.%. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít.

V případě XRD mikrodifrakční fázové analýzy se jedná se o analýzu materiálu o množství menším jak 10mg nebo z bodu o velikosti 0.1-2 mm. Lze analyzovat kompaktní vzorky různě křivých tvarů. Nejedná se o stopovou analýzu, minimální stanovitelná koncentrace krystalické fáze je cca 2 hm. %. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít.

Využití XRF metody spočívá ve standardním kvantitativním stanovení prvků F-U v pevných i kapalných vzorkách. Koncentrační rozsah měřených prvků se pohybuje v rozmezí 0.0001 hm.% (1ppm) -100 hm. %. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však obvykle nedestruktivní(pozor sklo tmavne!) a vzorek je možné po analýze dále použít. Nejrozšířenější aplikací je stanovování prvkového složení skel, jílových materiálů, cementů a kovových slitin.

V případě RTG monokrystalové difrakce se jedná o stanovení struktury malých organických molekul (do 100 nevodíkových atomů v nezávislé části). K měření je nutný monokrystal jehož velikost by se měla pohybovat v rozmezích 100-1000μm v závislosti na složení a velikosti molekuly. V souvislosti s monokrystalovou difrakcí se laboratoř zabývá metodikou přípravy monokrystalů organických látek. Pro pěstování monokrystalu organické látky z roztoku je požadováno cca 50 mg pevného vzorku. Předpokladem úspěšného měření je jeho maximální čistota a dostupné informace o rozpustnosti vzorku v různých rozpouštědlech nebo v jejich soustavách.

Elektronová mikrosonda s rozlišením podle vlnové disperze (WDS) je nepostradatelnou metodou při zjištění přesného bodového chemického složení, kde velikost bodu se pohybuje v jednotkách mikronů. Největších použití dosahuje v geologických vědách, mineralogii a petrologii a rovněž v materiálových vědách. Všude tam, kde je potřeba znát přesné kvantitativní chemické složení bodů na úrovni mikronů, nelze použít žádnou z metod přesné chemické analýzy průměrného složení vzorku (RFA, chemické analytické metody a další), ale právě elektronovou mikrosondu. Ta je v principu elektronovým mikroskopem, od kterého se liší především systémem detekce. Elektronové mikroskopy pracují převážně s energiově disperzním rozlišením - a také počtem krystalových spektrometrů umožňující současné měření více prvků, programováním analýz a množstvím měřených vzorků (počtem vzorků měřených během jednoho měření). Vzorek musí být před měřením zalit do pryskyřice do tablety o průměru 25 mm, naleštěn a před měřením pokoven, nejčastěji uhlíkem. Stejně jako o elektronového mikroskopu lze pozorovat povrch v sekundárních elektronech a fázová rozhraní v odražených elektronech.

 

[urlnadstranka] => [iduzel] => 24887 [canonical_url] => [skupina_www] => Array ( ) [url] => /rtg [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [21566] => stdClass Object ( [nazev] => Pedagogická činnost [seo_title] => Pedagogická činnost [seo_desc] => [autor] => [autor_email] => [obsah] =>

Pracovnící Centrálních laboratoří se podílí na výuce předmětů magisterského a doktorského studia. Studenti při výuce získávají rovněž praktické zkušenosti s moderními instrumentálními metodami pro celou řadu vědeckých i průmyslových aplikací.

Příklady předmětů magisterského studia

  • NMR pro studium přírodních látek (kód N342010)
  • Metody určování struktury látek (kód  N108019)
  • Molekulové modelování a bioinformatika (kód N320019)
  • Analytické metody v památkové péči  (kód N148006)
  • Metody průzkumu památek (kód N148009)
  • Seminář a laboratoř analytiky prostředí (kód N218025)
  • Analýza uhlovodíků a životní prostředí (kód N215020)

Příklady předmětů doktorského studia

  • Vybrané metody instrumentální analýzy  (kód D215006)
  • NMR spektroskopie pro studium přírodních látek (kód D342007)
  • RTG fázová analýza (kód D108004)

Podrobnější informace naleznete na webových stránkách

jednolivých laboratoří Centrálních laboratoří

Studentského informačního systému VŠCHT

[iduzel] => 21566 [canonical_url] => //clab.vscht.cz/pedagogicke-cinnost [skupina_www] => Array ( ) [url] => /pedagogicke-cinnost [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 20080 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Výzkum
    [seo_title] => Výzkum
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

V laboratoři probíhá výzkum jednak v oblasti malých organických molekul (kalix[4]areny, jednoduché přírodní látky a jejich analoga a další) a jednak biologických makromolekul – proteinů.

originál

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'clab.vscht.cz' [newurl_jazyk] => 'cs' [newurl_akce] => '/nmr/vyzkum' [newurl_iduzel] => 27690 [newurl_path] => 1/20076/20077/20080/27634/27690 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 27690 [platne_od] => 09.03.2023 14:30:00 [zmeneno_cas] => 09.03.2023 14:32:56.568621 [zmeneno_uzivatel_jmeno] => Jan Prchal [canonical_url] => [idvazba] => 35218 [cms_time] => 1711702005 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [27697] => stdClass Object ( [nazev] => Informace [barva_pozadi] => cervena [uslideru] => false [text] => [poduzel] => Array ( ) [iduzel] => 27697 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) [69643] => stdClass Object ( [nazev] => Metabolomika [seo_title] => Metabolomika [seo_desc] => [autor] => [autor_email] => [obsah] =>

NMR-omika, profilování sloučenin v 1H NMR spektrech

NMR spektroskopie se dá s výhodou využít i při analýze komplikovanějších směsí organických látek. Pokud chceme jednotlivé látky ve směsi identifikovat, případně i kvantifikovat, musíme mít k dispozici spektra čistých látek. Identifikace jednotlivých látek pak může proběhnout i na základě jediného signálu, který je ve spektru celé směsi dobře rozpoznatelný. Následně je třeba zjistit, zda lze ve spektru směsi nalézt všechny zbývající signály dané látky. Pokud ano, zbývá přizpůsobit proporčně intenzity všech signálů dané látky signálům ve spektru směsi. Porovnání jejich intenzity s intenzitou signálu standardu dostaneme informaci o koncentraci dané látky ve vzorku. Tomuto postupu říkáme profilování sloučenin a lze ho nejlépe uplatnit při analýze přesně vymezené skupiny látek v dané matrici. Takovými vzorky mohou být např. tělní tekutiny, ve kterých hledáme jednotlivé metabolity, potom mluvíme o metabolomice. Na základě koncentrací nejběžnějších organických látek jako jsou jednoduché organické kyseliny, sacharidy, alkoholy apod. můžeme určovat původ a kvalitu potravin pomocí tzv. foodomiky. Aerosolomika se naopak zabývá stanovováním koncentrací látek v ovzduší a následným určováním původu znečištění. Profilování je univerzální přístup, který může nalézt široké uplatnění, dosud je ale ještě v plenkách, minimálně na území České republiky. Nedílnou součástí zpracování získaných dat jsou pokročilé metody statistické analýzy, které nám umožňují nalézt jemné rozdíly v koncentracích látek mezi skupinami, které jsme si dopředu nadefinovali. Můžeme tak rozlišovat mezi vzorky zdravých či nemocných jedinců, případně pomocí predikčních modelů předpovídat, jak se bude vyvíjet rizikový jedinec. V současné době řešíme projekty zaměřené např. na ranou diagnostiku rakoviny slinivky, Alzheimerovy choroby či hepatocelulárního karcinomu. Převážně pracujeme s krevními vzorky, ale analyzovali jsme i vzorky dechového kondenzátu či mozkomíšního moku. Na základě statistické analýzy dokážeme určit metabolity s významnými změnami koncentrací v daných skupinách a následně identifikovat zasažené metabolické dráhy. Pomocí NMR metabolomiky lze monitorovat i vývoj onemocnění v čase, případně sledovat odpověď jedince na probíhající léčbu. Cílenou analýzou lze sledovat i metabolismus daného farmaka v organismu. Možných směrů výzkumu je zkrátka mnoho…

Michálková, L.; Horník, Š.; Sýkora, J.; Habartová, L.; Setnička, V.; Bunganič, B. Early Detection of Pancreatic Cancer in Type 2 Diabetes Mellitus Patients Based on H-1 NMR Metabolomics. J. Proteome Res. 2021, 20(3), 1744–1753. https://doi.org/10.1021/acs.jproteome.0c00990

Horník, Š.; Michálková, L.; Sýkora, J.; Ždímal, V.; Vlčková, S.; Dvořáčková, S.; Pelclová, D. Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. Appl. Sci. 2021, 11, 6601. https://doi.org/10.3390/app11146601

Horník, Š.; Sýkora, J.; Pokorná, P.; Vodička, P.; Schwarz, J.; Ždímal, V. Detailed NMR analysis of water-soluble organic compounds in size-resolved particulate matter seasonally collected at a suburban site in Prague. Atmospheric Environment 2021, 267, 118757. https://doi.org/10.1016/j.atmosenv.2021.118757

Horník, Š.; Sýkora, J.; Schwarz, J.; Ždímal, V. Nuclear Magnetic Resonance Aerosolomics: A Tool for Analysis of Polar Compounds in Atmospheric Aerosols. ACS Omega 2020, 5(36), 22750–22758. https://doi.org/10.1021/acsomega.0c01634

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 69643 [canonical_url] => [skupina_www] => Array ( ) [url] => /nmr/vyzkum/metabolomika [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [27691] => stdClass Object ( [nazev] => Výzkum malých organických molekul [seo_title] => Výzkum malých organických molekul [seo_desc] => [autor] => [autor_email] => [obsah] =>

Studium konformačních, dynamických a komplexačních vlastností kalix[4]arenů, thiakalix[4]arenů a kalix[4]resorcinarenů

Kalix[n]areny mají unikátní komplexační schopnosti a díky zajímavé molekulární architektuře se uplatnily při syntéze celé řady ligandů pro komplexaci kationtů, aniontů i neutrálních látek. Vzhledem ke své makrocyklické struktuře představuje kalix[4]aren relativně rigidní molekulu, která za normálních podmínek zaujímá tzv. konickou (cone) konformaci, připomínající pohár nebo kalich. Vhodnou substitucí mohou kalix[4]areny zaujmout další konformace – částečně konickou, 1,2- a 1,3-střídavou. Jednou z nejcennějších vlastností kalix[4]arenu je možnost syntézy různých konformerů s přesně definovanou prostorovou strukturou, což má zvláštní význam při návrhu látek s vhodnými komplexačními vlastnostmi. Kalix[n]areny jsou proto využívány k syntéze složitějších receptorů, senzorů, supramolekulárních struktur, modelů enzymů, kapalných krystalů a pod. Nedávno se podařilo syntetizovat sirnou obdobu kalix[4]arenu, kde jsou methylenové můstky základního skeletu nahrazeny atomy síry.


4 základní konformace kalix[4]arenů 4 konformace kalix[4]arenů

 

Studované projekty:

  • Konformační a dynamické vlastnosti a kinetika tetraalkylovaných a částečně alkylovaných thiakalix[4]arenů
  • Konformační a dynamické vlastnosti kalix[4]resorcinarenů
  • Strukturní studie komplexů kalix[4]arenu s anionty

Použitím různých NMR technik (1H, 13C, COSY, 1H-13C HMQC (HSQC), 1H-13C HMBC) je možné provést kompletní přiřazení protonových a uhlíkových signálů celého kalix[4](resorcin)arenového skeletu. Pomocí NOE (Nukleární Overhauserův efekt) určujeme konformace připravených látek, resp. struktury komplexů. Základními metodami k určení dynamického chování je Analýza tvaru čáry (Line Shape Analysis), výměnná spektroskopie (EXSY) a měření podélné a příčné 13C relaxace.

Studium prostorové struktury derivátů calix[n]arenů pomocí metody měření reziduálních dipolárních interakcí

Metoda měření reziduálních dipolárních interakcí (RDC) využívá anizotropní interakci, jejíž velikost je pro danou dvojici interagujících spinů (např. C-H vazbu) úměrná orientaci této skupiny v magnetickém poli. Tuto metodu využíváme pro potvrzení struktury známé z jiné analytické metody (X-RAY) či k  určení prostorové struktury látky, u které není možné vypěstovat vhodný monokrystal pro rentgenovou krystalografii.
Aby bylo možné reziduální dipolární interakční konstanty odečíst, tak je nutné molekuly analyzované látky částečně zorientovat, zavést je do vhodného orientujícího media. V naší laboratoři jsme otestovali několik typů orientujících medií a v praxi se nejlépe osvědčily roztoky polyglutamátových a polyacetylenových lyotropních kapalných krystalů.


Srovnání prostorových struktur derivátu calix[4]arenu získaných z různých instrumentálních metod.

Holub, Jan; Eigner, Václav; Vrzal, Lukáš; Dvořáková, Hana; Lhoták, Pavel, Calix[4]arenes with intramolecularly bridged meta positions prepared via Pd-catalysed double C-H activation., Chemical Communications, Volume49, Issue27, Pages2798-2800.

Konformační analýza derivátů purinů pomocí kombinace NMR spektroskopie a ab-initio výpočetních metod.

Puriny a jejich deriváty jsou často studovanými látkami vzhledem k jejich možnému farmakologickému využití. Pro aplikaci těchto látek je však podmínkou detailně znát jejich prostorovou strukturu, kterou v naší laboratoři studujeme kombinací klasických metod NMR spektroskopie (1H, 13C-APT, 1H-31C HMQC, 1H-13C HMBC a 1H-15N HMBC), doplněných o výsledky ab-initio výpočtů.
Prvním krokem při výpočtu je lokalizace všech potenciálních konformerů studované látky pomocí konformačního skenu. Populované konformery jsou optimalizovány na DFT úrovni a od těchto struktur je následně možné vypočítat NMR parametry (chemické posuny v 1H, 13C i 15N NMR spektrech.) Pro korelace s experimentálními hodnotami je nejvhodnější využít 13C a 15N NMR data vzhledem k dostatečně vysoké disperzi chemických posunů.


Optimalizované struktury N9-(p-nitrofenyl)adeninu a N7-(p-nitrofenyl)adeninu. Pro každý regioisomer byl nalezen pouze jeden populovaný konformer.

 

Váňa, Lubomír; Vrzal, Lukáš; Dvořáková, Hana; Himl, Michal; Linhart, Igor; Direct arylation of adenine by fluoro- and chloronitrobenzenes. Effect of microwaves. Synthetic Communications;doi:10.1080/00397911.2013.831902

[poduzel] => Array ( ) [iduzel] => 27691 [canonical_url] => //clab.vscht.cz/nmr/vyzkum/organika [skupina_www] => Array ( ) [url] => /nmr/vyzkum/organika [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [27692] => stdClass Object ( [nazev] => Studium struktury a dynamických vlastností proteinů [seo_title] => Studium struktury a dynamických vlastností proteinů [seo_desc] => [autor] => [autor_email] => [obsah] =>

NMR spektroskopie při řešení struktury proteinů

NMR spektroskopie je výborná metoda pro studium struktury proteinů, jakožto i jejich dynamického chování, komplexačních schopností a celé řady dalších důležitých fyzikálně-chemických vlastností. Pro získání prostorové struktury je nutné protein nejprve izotopově obohatit atomy 13C a 15N (všechny atomy uhlíku a dusíku v molekule jsou nahrazeny těmito izotopy). Toho lze dosáhnout expresí příslušného proteinu vhodným expresním systémem (např. v bakteriích Escherichia coli) v izotopově obohaceném růstovém médiu.

Interpretací multidimensionálních multinukleárních NMR experimentů lze přiřadit 1H, 13C a 15N rezonance příslušného proteinu. V další fázi se získávají experimentální NMR parametry (NOE, interakční konstanty, reziduální dipolární interakční konstanty...), které lze přímo využít pro výpočet prostorové struktury proteinu. Dynamické vlastnosti proteinů se získávají měřením relaxačních vlastností jader 13C a 15N. Podrobnější informace o studiu proteinů pomocí NMR je možné získat v rámci námy vyučovaných předmětů.

 

V naší laboratoři využíváme NMR spektroskopii pro studium prostorové struktury a různých fyzikálně-chemických vlastností* retrovirových proteinů. Retroviry jsou podskupinou virů, jejichž genetická informace je kódována diploidní ribonukleovou kyselinou RNA a pomocí enzymu zvaného reverzní transkriptasa je přepisována do příslušné DNA, která je poté vložena do genomu hostitelské buňky.

Nejznámějším a nejlépe prozkoumaným retrovirem je virus HIV-1, který je příčinou nemoci AIDS (Acquired ImmunoDeficiency Syndrome). V naší laboratoři jsme se zaměřili na Masonův-Pfizerův opičí virus (zkratka M-PMV). Tento virus byl poprvé izolován z prsního tumoru opice druhu Makak. M-PMV není člověku přímo nebezpečný, ale představuje vynikající modelový systém pro studium obecných zákonitostí různých fází života retrovirů.

 

Studované projekty

  1. Studium struktury matrixového proteinu Mason-Pfizerova opičího viru a jeho interakce s cytoplasmatickou membránou
  2. Studium vztahů mezi strukturou a funkcí fenotypově významných mutantů matrixového proteinu Masonova-Pfizerova opičího viru.

Studium struktury matrixového proteinu Mason-Pfizerova opičího viru a jeho interakce s cytoplasmatickou membránou

Na obrázku 1 je schematicky znázorněna zralá retrovirová částice. Matrixový protein (MA), který tvoří vnější proteinový obal a těsně přilehá na vnitřní stranu lipidové membrány, je exprimován jako N-terminální doména polyproteinového prekursoru Gag a je odpovědný za celou řadu životních funkcí retrovirů. Především řídí transport proteinových prekursorů do místa skládání (vytvoření) nezralé virové částice, dále je odpovědný za její transport k plasmatické membráně, s níž se také přímo váže a zprostředkovává tak vazbu virové částice k membráně. MA interaguje s membránou pomocí oblasti bazických aminokyselin a také zbytkem kyseliny myristové, který je kovalentně připojen k jeho N-konci.

Model retroviru

Obr. 1. Vnitřní uspořádání zralé retrovirové částice. Pod lipidovou dvojvrstvou obsahující transmembránovou (TM – světle modře) a povrchovou (SU – světle zeleně) jednotku Env proteinu je ukotven matrixový protein (MA – tmavě červeně). Vlastní core retroviru je složeno z kapsidového (CA – fialově) a nukleokapsidového (NC – červeně) proteinu, který chrání diploidní retrovirovou RNA (růžově). V core se dále nachází enzymy integrasa (IN – žlutě), reversní transkriptasa (RT – modře) a také proteasa (tmavě zeleně). V případě Masonova-Pfizerova opičího viru je MA, podobně jako u mnoha dalších retrovirů, na N konci kotranslačně myristoylován.

Struktura myristoylovaného matrixového proteinu M-PMV

V naší laboratoři jsme určili strukturu M-PMV MA a to jak jeho nemyristoylované formy, tak i jeho myristoylované formy. Struktury obou forem jsou si podobné, jsou složeny ze 4 helixů v podobném uspořádání jako u MA jiných retrovirů. Kyselina myristová je zanořena do jádra proteinu. Při srovnání struktury myristoylované a nemyristoylované formy MA je patrné, že myristoylace způsobila mírnou změnu orientace I. a II. helixu (Obr. 2), která je důležitá pro interakci se složkami cytoplasmatické membrány.

Morfogeneze

Obr. 2. Srovnání struktury myristoylované (zelená) a nemyristoylované (červená) formy M-PMV MA.

Oligomerizace matrixového proteinu.

Rentgenová struktura matrixového proteinu HIV-1 ukázala, že MA tvoří trimery. HIV-1 MA trimerizuje i v roztoku, ovšem pouze v myristoylované formě. Myr(−) HIV-1 MA nevykazuje v roztoku žádné známky oligomerizace.

Nám se podařilo kombinovaným využitím mapování změn chemických posunů se změnou koncentrace měřeného vzorku (Obr. 3) a změřením translačních difusních koeficientů pomocí gradientní NMR spektroskopie prokázat, že myr(−) M-PMV MA ochotně tvoří dimery a trimery. Tyto výsledky jsou potvrzeny také oligomerizací myr(−) MA, která probíhá jak samovolně v neredukujícím prostředí, tak i za pomoci chemického prokřížení.

spektra ředění

Obr. 3. Překryvy dvou vybraných oblastí 1H-15N HSQC spektra měřených za různých koncentrací WT MA. Oranžovými šipkami jsou označena residua s významnou změnou chemického posunu.

Na základě intenzity změn v chemických posunech v závislosti na koncentraci vzorku jsme nalezli aminokyseliny, které jsou odpovědné za oligomerizaci MA. Nacházejí se ve spojce mezi druhým a třetím helixem a ve třetím helixu a tvoří spojitou oblast na povrchu proteinu – interakční rozhraní (Obr. 4a).

Oligomerizační rozhraní WT a R55F MA.

Obr. 4. Interakční rozhraní nalezené na WT MA a zobrazené na WT MA (a) a R55F MA (b). Residua interakčního rozhraní jsou vyznačena červeně.

Molekulárním modelováním se zahrnutím změn v chemických posunech byla navržena možná struktura dimeru a trimeru WT MA, které jsou znázorněny na Obrázku 5.

Modely oligomerů.

Obr. 5. Modely struktur dimeru (a) a trimeru (b) WT MA vypočítané v programu HADDOCK. Pro srovnání je zde uvedena i struktura trimeru HIV-1 (c, PDB ID 1HIW).

Při studiu myristoylované formy M-PMV MA bylo ovšem překvapivě zjištěno, že myrMA oligomery netvoří. Na rozdíl od (myr-)MA nedochází při změně koncentrace k významným změnám chemických posunů signálů jeho aminokyselin (Obr. 6) a ani jinými metodami se oligomerizaci nepodařilo prokázat. Rozdílné chování obou forem lze vysvětlit změnou konformace oligomerizačního rozhraní způsobenou myristoylací, kdy některé aminokyseliny účastnící se oligomerizace jsou ve struktuře myrMA ukryty. Oligomerizace M-PMV MA tedy nemůže ovlivňovat skládání částice v buňce, protože myristoylovaný MA neoligomerizuje. Je ovšem možné, že po navázání MA na cytoplasmatickou membránu dojde ke konformační změně, která oligomerizaci umožní a ta se bude moci uplatnit například při interakci s proteinem Env.

Interakce s cytoplasmatickou membránou

MA se nachází na povrchu nezralé virové částice a je proto zodpovědný za interakci s buněčnou membránou když virus opouští hostitelskou buňku. Jednou z podstatných složek buněčné membrány je fosfatidylinositol[4,5]-bisfosfát (PI[4,5]P2). V případě matrixového proteinu HIV-1 bylo prokázáno, že se specificky váže na MA a tato interakce je pravděpodobným spouštěcím mechanismem myristoylového přepínače, kdy dojde k expozici zbytku kyseliny myristové, která je takto připravena pro interakci s membránou. Při studiu interakce M-PMV MA s PI[4,5]P2 jsme zjistili, že M-PMV MA také interaguje s PI[4,5]P2, ovšem v mnoha ohledech se od HIV-1 MA odlišuje.

PI[4,5]P2 se váže do vazebného místa mezi I., II. a IV. helixem (Obr. 6). S PI[4,5]P2 interaguje pouze myrMA, protože u (myr-)MA je vazebné místo uzavřeno rozdílnou orientací I. a II. helixu. PI[4,5]P2 má v kavitě zanořené zbytky mastných kyselin zatímco inositolová skupina zůstává na povrchu. Stejně jako je tomu u HIV-1 jedna z mastných kyselin je zanořena přímo do středu proteinu, kdežto druhá je zanořená částečně a její konec směřuje k povrchu proteinu. Tato orientace naznačuje, že v případě přirozeného PI[4,5]P2 jedna z mastných kyselin zůstala jako kotva v cytoplasmatické membráně, stejně jako bylo navrženo u HIV-1 MA. Fosfátové skupiny jsou blízko povrchu a interagují s bazickými aminokyselinami MA (Obr. 7). Celkově je struktura komplexu M-PMV MA s PI[4,5]P2 podobná struktuře komplexu HIV-1 i HIV-2 MA s PI[4,5]P2.

Zkoumali jsme i závislost interakce na různé fosforylaci PIP. Testovali jsme interakci MA s PIP fosforylovanými v pozicích 3; 3,4; 4; 4,5 a 3,4,5. Ve všech případech byla interakce srovnatelná s PI[4,5]P2 a nepodařilo se najít rozdíly v preferenci jednotlivých forem PIP, na rozdíl od HIV-1 a HIV-2 MA, kde byl PI[4,5]P2 jednoznačně preferovaný.

Celkově je interakce PI[4,5]P2 s M-PMV MA slabší než s HIV-1 MA. U M-PMV MA, na rozdíl od HIV-1 MA, také při interakci s rozpustným PI[4,5]P2 s krátkými zbytky mastných kyselin nedochází k uvolnění myristoylu z jádra proteinu.

Modely oligomerů.

Obr. 6 Komplex myristoylovaného MA (zelený) s PI[4,5]P2 vypočtený v programu HADDOCK.

Modely oligomerů.

Obr. 7 Komplex myristoylovaného MA (zelený) s PI[4,5]P2se zvýrazněnou interakcí lyzinových zbytků MA (zelené) s fosfátovými skupinami PI[4,5]P2 (červené).

Vybrané publikace:

  • Vlach J., Srb P., Prchal J., Grocký M., Lang J., Ruml T., Hrabal R. (2009) Nonmyristoylated Matrix Protein from the Mason-Pfizer Monkey Virus Forms Oligomers. J. Mol. Biol., 390(5), 967–980. doi:10.1016/j.jmb.2009.05.063
  • Srb P., Vlach J., Prchal J., Grocký M., Ruml T., Lang J., Hrabal R. (2011) Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. J. Phys. Chem. B, 115(11), 2634-2644.doi: 10.1021/jp110420m
  • Prchal J., Junková P., Strmisková M., Lipov J., Hynek R., Ruml T., Hrabal R. (2011) Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Protein Expr. Purif., 79(1), 122-127. doi: 10.1016/j.pep.2011.05.010
  • Prchal, J., Srb, P., Hunter, E., Ruml, T., Hrabal, R. (2012)The Structure of Myristoylated Mason-Pfizer Monkey Virus Matrix Protein and the Role of Phosphatidylinositol-(4,5)-bisphosphate in its Membrane Binding.J.Mol.Biol., in press, doi:10.1016/j.jmb.2012.07.021

 


Studium vztahů mezi strukturou a funkcí fenotypově významných mutantů matrixového proteinu Masonova-Pfizerova opičího viru.

Změna místa skládání nezralé virové částice.

Z hlediska místa skládání nezralé virové částice se retroviry dělí na C- a D-typ (Obr. 8). Retroviry C-typu (HIV-1) skládají nezralé virové částice na vnitřní straně buněčné membrány, zatímco viry typu D (M-PMV) v tzv. pericentriolární oblasti infikované buňky. Rozdíl mezi oběma fenotypy je velmi nepatrný, jak bylo prokázáno mutacemi matrixového proteinu M-PMV a později i u HIV-1. V případě M-PMV byl zaměněn arginin v pozici 55 za hydrofobní aromatickou aminokyselinu (Trp, Phe), čímž dochází ke změně místa skládání kapsidy z pericentriolární oblasti na vnitřní stranu plasmatické membrány (konverze D-typu na C-typ). Různými experimenty bylo prokázáno, že fenotyp typu D je závislý na buněčném transportním systému dyneinu.

Morfogeneze

Obr. 8. Dvě různé morfogeneze retrovirů, typ C a typ D. U retrovirů typu C (např. u HIV-1) dochází ke skládání virové částice na cytoplasmatické membráně hostitele (vlevo), kdežto u retrovirů typu D (M-PMV) se Gag prekursory skládají v prokapsidu v pericentriolární oblasti buňky, odkud je tato prokapsida transportována k membráně, kde vypučí (na obrázku vpravo).

V naší laboratoři se podařilo určit strukturu jak divokého typu matrixového proteinu (wt MA), tak mutantu R55F (Obr. 9). Zásadním rozdílem mezi oběma proteiny je přístupnost tzv. CTRS domény (Cytoplasmic Targeting and Retention Signal), která je odpovědná za cílení virových proteinů do pericentriolární oblasti prostřednictvím interakce s lehkým řetězcem dyneinu (Tctex-1). CTRS v nemutovaném MA je plně exponovaná na povrchu proteinu, a tedy přístupná k interakci s buněčným transportním systémem. Ve struktuře mutantu R55F dochází k omezení její přístupnosti v důsledku vzájemné reorientace N- (helix I a II) a C-koncové domény (helix III a IV) proteinu. Prokázali jsme tedy, že v důsledku omezené přístupnosti CTRS domény nemůže Gag polyprotein interagovat s dyneinem, čímž je zablokován mechanismus transportu Gag polyproteinů do oblasti poblíž jádra buňky. Místo toho je v mutantu R55F aktivován tzv. bipartitní transportní signál, kterým jsou Gag proteiny dopravovány k vnitřní straně plasmatické membrány. Tím dochází ke změně fenotypu viru z D na C.

Struktury WT, R55F MA

Obr. 9. Srovnání struktur wt MA a R55F, (A) Superpozice 18 nejlepších struktur wt MA, (B) průměrná struktura wt MA, (C) superpozice 15 nejlepších struktur R55F, (D) průměrná struktura R55F. Jednotlivé α-helixy jsou popsány a všechny důležité strukturní prvky jsou barevně odlišeny.

 

 

Na rozdíl od WT MA mutant R55F nevykazoval téměř žádné známky oligomerizace. Rozdílné chování obou proteinů lze vysvětlit na základě jejich odlišné struktury, resp. odlišné přístupnosti CTRS domény, která je majoritní složkou oligomerizační domény (Obr. 4b).

Vybrané publikace:
  • Vlach, J., Lipov, J., Veverka, V., Rumlová, M., Ruml, T., Hrabal, R. 2005. Assignment of H-1, C-13, and N-15 resonance of wt matrix protein and its R55F mutant from Mason-Pfizer monkey virus. J. Biomol. NMR. 31: 381-382. doi: 10.1007/s10858-005-2473-x
  • Vlach J., Lipov J., Rumlová M., Veverka V., Lang J., Srb P., Knejzlík Z., Pichová I., Hunter E., Hrabal R., Ruml T. 2008. D-retrovirus morhogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc. Natl. Acad. USA 105: 10565-10570. doi: 10.1073/pnas.0801765105
[poduzel] => Array ( ) [iduzel] => 27692 [canonical_url] => //clab.vscht.cz/nmr/vyzkum/proteiny [skupina_www] => Array ( ) [url] => /nmr/vyzkum/proteiny [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )


VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi