Prosím počkejte chvíli...
stdClass Object
(
    [nazev] => Centrální laboratoře VŠCHT Praha
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => UOa3DCAUaJJ2C3MuUhI9eR1T9ZNzenZfHPQN4wupOE8
    [ga_account] => UA-10822215-3
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 
    [pozadi1] => 
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'clab.vscht.cz'
    [newurl_jazyk] => 'cs'
    [newurl_akce] => '[cs]'
    [newurl_iduzel] => 
    [newurl_path] => 1/20076/20077
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 20077
    [platne_od] => 26.05.2023 09:28:00
    [zmeneno_cas] => 26.05.2023 09:28:37.644961
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 24781
    [cms_time] => 1711715706
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => /
            [logo] => 
            [logo_mobile_href] => /
            [logo_mobile] => 
            [google_search] => 001523547858480163194:u-cbn29rzve
            [social_fb_odkaz] => 
            [social_tw_odkaz] => 
            [social_yt_odkaz] => 
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [mobile_over_nadpis_menu] => Menu
            [mobile_over_nadpis_search] => Hledání
            [mobile_over_nadpis_jazyky] => Jazyky
            [mobile_over_nadpis_login] => Přihlášení
            [menu_home] => Domovská stránka
            [paticka_budova_a_nadpis] => BUDOVA A
            [paticka_budova_a_popis] => Rektorát, oddělení komunikace, pedagogické oddělení, děkanát FCHT, centrum informačních služeb
            [paticka_budova_b_nadpis] => BUDOVA B
            [paticka_budova_b_popis] => Věda a výzkum, děkanát FTOP, děkanát FPBT, děkanát FCHI, výpočetní centrum, zahraniční oddělení, kvestor
            [paticka_budova_c_nadpis] => BUDOVA C
            [paticka_budova_c_popis] => Dětský koutek Zkumavka, praktický lékař, katedra ekonomiky a managementu, ústav matematiky
            [paticka_budova_1_nadpis] => NÁRODNÍ TECHNICKÁ KNIHOVNA
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => STUDENTSKÁ KAVÁRNA CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
[paticka_odkaz_mail] => mailto:Josef.Chudoba@vscht.cz [zobraz_desktop_verzi] => zobrazit plnou verzi [social_fb_title] => [social_tw_title] => [social_yt_title] => [drobecky] => Nacházíte se: VŠCHT PrahaCentrální laboratoře [aktualizovano] => Aktualizováno [autor] => Autor [stahnout] => Stáhnout [more_info] => více informací [paticka_mapa_odkaz] => [zobraz_mobilni_verzi] => zobrazit mobilní verzi [nepodporovany_prohlizec] => Ve Vašem prohlížeči se nemusí vše zobrazit správně. Pro lepší zážitek použijte jiný. [preloader] => Prosím počkejte chvíli... [social_in_odkaz] => [hledani_nadpis] => hledání [hledani_nenalezeno] => Nenalezeno... [hledani_vyhledat_google] => vyhledat pomocí Google [social_li_odkaz] => ) [poduzel] => stdClass Object ( [20079] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [20083] => stdClass Object ( [obsah] => [iduzel] => 20083 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20084] => stdClass Object ( [obsah] => [iduzel] => 20084 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20085] => stdClass Object ( [obsah] => [iduzel] => 20085 [canonical_url] => //clab.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 20079 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [20080] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [25142] => stdClass Object ( [nazev] => Laboratoř atomové absorpční spektrometrie [seo_title] => Laboratoř atomové absorpční spektrometrie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Analýzy

V laboratoři se provádí stanovení prakticky všech kovových prvků ve vzorcích anorganického popřípadě i organického charakteru metodami atomové spektrometrie, tj. atomovou absorpční spektrometrií (s plamenovou i elektrotermickou atomizací).

Laboratoř provádí stanovení prvků přítomných v koncentracích 100 – 10–7% a nižších metodou atomové absorpční spektrometrie (AAS) s plamenovou i bezplamennou atomizací. Vzorky jsou měřeny převážně jako roztoky ve vodném i organickém prostředí (metanol, etanol), v omezeném množství je možné provádět i základní rozklady. Stanovení rtuti je možno provést přímo i v pevném vzorku.

V laboratoři se provádí měření těchto prvků (mez detekce v mg/l pro plamenovou techniku atomizace):

 Ag (0.03)

 Al (0.4)

 As (0.6)

 Au (0.1)

 

 

 B (8)

 Ba (0.2)

 Be (0.02)

 Bi (0.2)

 

 

Ca (0.01)

 Cd (0.005)

 Co (0.05)

 Cr (0.06)

 Cs (0.04)

 Cu (0.04)

 Fe (0.05)

 Ga (0.7)

 Ge (1.5)

 Hg (5)

 In (0.2)

 

 K (0.01)

 La (1)

 Li (0.02)

 Mg (0.003)

 Mn (0.02)

 Mo (0.3)

 Na (0.003)

 Ni (0.05)

 Pb (0.1)

 Pd (0.1)

 Pt (1.5)

 

 Rb (0.03)

 Rh (0.15)

 Sb (0.3)

 Se (0.5)

 Si (1.0)

 

 Sn (1)

 Sr (0.05)

 Ta (11)

 Ti (1.5)

 

 

 Tl (0.3)

 V (0.75)

 W (6)

 Zn (0.05)

 

 

 

U některých prvků je možné dosáhnout nižších mezí detekce s použitím AAS s elektrotermickou atomizací (Hg) a AAS s hydridovou technikou (As, Se, Sb). Tato stanovení musí být předběžně konzultována.

 Další aktivity

  • konzultační činnost
  • aplikace pro potřeby výzkumu a monitorování v oblastech moderních technologií, zdravotnictví, životního prostředí

Využití v monitoringu životního prostředí:

  • Analýza srážkových, pitných a povrchových vod, odpadních vod a výluhů ze skládek
  • Kvalita ovzduší, analýzy prašných aerosolů a městského prachu
  • Příprava testovacích materiálů, testování odběrových systémů, metodický výzkum prvkového zastoupení v jemných frakcích aerosolů (As, Cd, Cr, Mn, Ni, Pb).

[iduzel] => 25142 [canonical_url] => //clab.vscht.cz/aas [skupina_www] => Array ( ) [url] => /aas [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27634] => stdClass Object ( [nazev] => Laboratoř NMR spektroskopie [seo_title] => NMR [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř NMR spektroskopie je součástí Centrálních laboratoří na Vysoké škole chemicko-technologické v Praze. Jejím hlavním posláním je servisní měření NMR spekter vzorků dodaných ze školních laboratoří, ale i z pracovišť mimo školu. Kromě základních servisních služeb je zde možné provést také nestandardní nebo složitější experimenty, včetně jejich vyhodnocení. Současně s  tím v této laboratoři probíhá vědecká a pedagogická činnost, která zahrnuje úzkou spolupráci s dalšími pracovišti na VŠCHT.

Nejširší využití NMR spektroskopie nalézá v charakterizaci látek, převážně organického původu. Laboratoř NMR se kromě určení chemické struktury produktů a meziproduktů reakcí zabývá také stanovením zastoupení složek ve směsích, měřením kinetiky a  termodynamiky chemických dějů, kvalitativním posouzením i kvantitativním výpočtem geometrie molekul a dynamikou molekul.

S rozvojem pokročilých technik se NMR spektroskopie stala významnou metodou pro výpočet struktury biomakromolekul – proteinů a nukleových kyselin. V současnosti řešíme prostorové struktury vybraných proteinů Masonova-Pfizerova opičího retroviru.

Ve srovnání s jinými analytickými metodami je NMR spektroskopie méně citlivou metodou, nejedná se o stopovou analýzu. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít

[iduzel] => 27634 [canonical_url] => //clab.vscht.cz/nmr [skupina_www] => Array ( ) [url] => /nmr [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27362] => stdClass Object ( [nazev] => Laboratoř analýzy povrchů [seo_title] => Laboratoř analýzy povrchů [seo_desc] => [autor] => [autor_email] => [obsah] =>

K měření analýz povrchu máme k dispozici přístroj ESCAProbeP vyrobený firmou Omicron Nanotechnology Ltd. V roce 2004 Přístroj je vybaven monochromátorem, dvěma typy iontových děl, detekcí elektronů s 5 channeltrony, možností kompenzace nabíjení vzorku pomocí zdroje nízkoenergetických elektronů, zdrojem UV záření pro analýzu valenčních stavů, fokusovatelným zdrojem elektronů a detektorem sekundárních elektronů.

Nejčastěji řešené problematiky:

  • Oxidační stavy katalyzátorů
  • Stavy povrchů na organických materiálech
  • Korozní vrstvy
  • Vrstvy vyvíjené pro chemické senzory
  • Materiály pro elektroniku s využitím možností měření koncentračních profilů
[iduzel] => 27362 [canonical_url] => //clab.vscht.cz/lap [skupina_www] => Array ( ) [url] => /lap [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27315] => stdClass Object ( [nazev] => Laboratoř molekulové spektroskopie [seo_title] => Laboratoř molekulové spektroskopie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Vítáme Vás na stránkách Laboratoře molekulové spektroskopie Vysoké školy chemicko-technologické v Praze. Laboratoř molekulové spektroskopie je součástí Centrálních laboratoří VŠCHT, které jsou společným servisním a vědeckým pracovištěm všech fakult VŠCHT.

Laboratoř molekulové spektroskopie provádí identifikaci neznámých látek, určování funkčních skupin, ověřování čistoty látek a stanovení jejich obsahu ve směsích. Laboratoř využívá infračervenou a Ramanovu spektrometrii v mnoha oborech, a to ve strukturní analýze organických a anorganických materiálů, analýze cizorodých látek v životním prostředí, analýze spalných plynů, polymerů, sorbentů, plnidel a lepidel papíru a pryskyřic, lepidel pro dentální protézy, analýze barviv, plnidel a emailů využívaných při restaurování uměleckých památek a historických děl. Infračervené spektrometrie je využíváno též v analýze potravin (např. stanovení cukrů v nápojích, ethanolu v alkoholických nápojích, analýza vín a medů), v medicíně (močové konkrementy), v ekologii (např. stanovení ropných látek ve vzduchu a v zeminách, respirativního křemene v ovzduší, detekce alergenních pylů) a v průmyslové analýze (např. stanovení aditiv v olejích).

Vědecká činnost labotatoře je zaměřena na vypracovávání metodik měření, kombinaci výsledků získaných různými technikami měření, které vedou ke spolehlivějšímu řešení analytického problému.

[urlnadstranka] => [iduzel] => 27315 [canonical_url] => [skupina_www] => Array ( ) [url] => /ir [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [27275] => stdClass Object ( [nazev] => Laboratoř transmisní elektronové mikroskopie [seo_title] => Laboratoř transmisní elektronové mikroskopie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř je vybavena přístrojem EFTEM Jeol 2200 FS. Jedná se o transmisní elektronový mikroskop vybavený energiovým filtrem umožňuje pracovat při urychlovacích napětích do 200 kV. Přístroj je vybaven univerzálně a je proto vhodný k pozorování jak materiálových tak biologických vzorků.

[iduzel] => 27275 [canonical_url] => //clab.vscht.cz/tem [skupina_www] => Array ( ) [url] => /tem [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [25225] => stdClass Object ( [nazev] => Laboratoř termické analýzy [seo_title] => Laboratoř termické analýzy [seo_desc] => [autor] => [autor_email] => [obsah] =>

O termické analýze

Metody termické analýzy provozované v laboratoři termické analýzy umožňují testovat/ověřit:

  • procesy probíhající v tepelně namáhaných materiálech, které jsou spojeny se změnou hmotnosti (sušení, dehydratace, oxidace, …)
  • tepelné zabarvení procesů v tepelně namáhaných materiálech (tání, krystalizace, skelný přechod,…)
  • vliv experimentálních podmínek (rychlost ohřevu, atmosféra) na průběh dějů v tepelně namáhaných materiálech
  • tepelnou stálost materiálů (rozklad)
  • případně hledat vhodný postup pro tepelné zpracování široké škály materiálů

 

Principy metod

Termogravimetrická analýza TG

Vzorek analyzované látky se kontrolovaně zahřívá/chladí (neizotermně nebo izotermně) za současného vážení a zaznamenává se průběh hmotnosti v závislosti na teplotě a čase.

Diferenční termická analýza DTA

Vzorek analyzované látky se zahřívá/chladí kontrolovanou rychlostí současně s referencí, která se během ohřevu nemění. Zaznamenává se teplotní rozdíl vzniklý mezi vzorkem a referencí, které vznikají v důsledku dějů probíhajících v analyzovaném vzorku. Teplotní rozdíl zaznamenaný v závislosti na teplotě nebo čase vypovídá o tepelném zabarvení dějů proběhlých v analyzovaném vzorku při jeho ohřevu/chlazení (děje exotermní/endotermní).

Diferenční skenovací kalorimetrie DSC

DSC zařízení zaznamenává tepelné efekty v závislosti na teplotě, které vznikají při fázovém přechodu nebo při chemické reakci. Měřená data jsou prostřednictvím vhodné kalibrace softwarově převáděna z jednotky mikrovolt na miliwatt. Výsledky vyjadřují spotřebu nebo výdej energie během reakcí probíhající v analyzovaném vzorku.

Hmotnostní spektrometrie MS ve spojení s metodami termické analýzy

Hmotnostní spektrometr kvadrupólového typu umožňuje detekovat vybrané hmoty do 300 amu, které jsou obsaženy v plynných zplodinách, které vznikají během termické analýzy vzorků.

Infračervená spektroskopie FTIR ve spojení s termogravimetrickou metodou

V laboratoři provozovaný infračervený spektrometr umožňuje měřit spektra plynných zplodin, které vzniknou při termogravimetrické analýze vzorků.

[iduzel] => 25225 [canonical_url] => //clab.vscht.cz/ta [skupina_www] => Array ( ) [url] => /ta [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [21297] => stdClass Object ( [nazev] => Centrální laboratoře [seo_title] => Centrální laboratoře [seo_desc] => [autor] => [autor_email] => [obsah] =>

 

Centrální laboratoře byly vytvořeny jako pracoviště zabezpečující podporu vědecko-výzkumné a pedagogické činnosti fakult Vysoké školy chemicko-technologické v Praze. Jejich činnost sahá od servisních analytických měření až po spolupráci při řešení vědecko-výzkumných projektů, nezanedbatelný je i přínos pracovníků jednotlivých laboratoří pří výchově studentů. V současnosti sdružují Centrální laboratoře devět pracovišť vybavených pro analýzy nejrůznějších typů látek a materiálů.  Na webových stránkách naleznete stručné informace o jednotlivých laboratořích, jejich personálním obsazení, přístrojovém vybavení a možnostech spolupráce. Rádi uvítáme jakékoliv podněty, které by mohly vést ke zkvalitnění spolupráce a  poskytovaných analýz.

prof. Ing. Richard Hrabal, CSc.,  vedoucí Centrálních laboratoří

 Laboratoř NMR spektroskopie

      přízemí budova A, dveře 42, tel. 220 443 805

      vedoucí: prof. Ing. Richard Hrabal, CSc. (richard.hrabal@vscht.cz)

Laboratoř molekulové spektroskopie (IR a Ramanova spektroskopie)

       3. n.p. budova A, dveře 310b, tel. 220 444 137

      vedoucí: Ing. Ladislav Lapčák (Ladislav.Lapcak@vscht.cz)

Laboratoř rentgenové difraktometrie a spektrometrie

       3. n.p. budova A, dveře P03, tel. 220 444 201

      suterén budova A, dveře S38, tel. 220 445 023, 5024

      vedoucí: RNDr. Jaroslav Maixner, CSc. (jaroslav.maixner@vscht.cz, tel. 730 809 852)

 Laboratoř hmotnostní spektrometrie

       suterén budova A, dveře S08, tel. 220 443 812

      vedoucí: Ing. Josef Chudoba, Ph.D. (josef.chudoba@vscht.cz)

 Laboratoř atomové absorpční spektrometrie

       4. n.p. budova A, dveře 406, tel. 220 443 813

      vedoucí: Ing. Dana Pokorná (dana.pokorna@vscht.cz)

 Laboratoř organické elementární analýzy

       2. n.p. budova A, dveře 275, tel. 220 443 810

      vedoucí: Ing. Petr Baroš (petr.baros@vscht.cz)

 Laboratoř termické analýzy

       suterén budova B, dveře  S28a, tel. 220 443 839

      vedoucí: Ing. Jakub Havlín (jakub.havlin@vscht.cz)

 Laboratoř analýzy povrchů

       suterén budova B, dveře S12, tel. 220 443 073

      vedoucí:  doc. Ing. Petr Sajdl, CSc. (petr.sajdl@vscht.cz)

Laboratoř transmisní elektronové mikroskopie

      přízemí budova A, dveře 49, tel. 220 442 042

      vedoucí: Ing. Michalcová Alena, Ph.D. (alena.michalcova@vscht.cz)

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 21297 [canonical_url] => [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [21841] => stdClass Object ( [nazev] => Laboratoř hmotnostní spektrometrie [seo_title] => hmotnostní spektrometrie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř provádí měření hmotnostních spekter organických sloučenin a směsí organických látek s využitím separační techniky plynové (GC) a reverzní kapalinové (RP-HPLC) chromatografie.

Dostupné ionizační techniky

GC/MS, přímý vstup do zdroje spektrometru (sonda, batch inlet):

  • elektronová ionizace (EI+ 70 eV)
  •  chemická ionizace (CI) - reakční plyn methan

LC/MS, FIA (Flow Injection Analysis), RP-HPLC

  • elektrosprejová ionizace (ESI)
  • atmosferická chemická ionizace (APCI)

 

Měření hmotnostních spekter

  • nízké (jednotkové) rozlišení
  • vysoké rozlišení – přesnost m/z  lepší než 5 ppm; 
    (cca 1-2  ppm při použití Lock Mass)
  • ESI, APCI – možnost provedení MSn (vícenásobná MS) měření spekter
  •  EI+ 70 eV - možnost provedení  MS2 měření spekter

Maximální rozsah hmotností při měření hmotnostních spekter

  • EI + 70 eV, CI:  cca 1000 Da - limitováno stabilitou analyzované sloučeniny při převodu do parní fáze
  • ESI, APCI:   4000 Da (uvedeno pro jednonásobně nabité ionty)

Typy analýz

  • potvrzení molekulové hmotnosti (návrh nebo potvrzení elementárního složení)
  • charakterizace struktury molekuly – MS/MS experimenty, EI+ 70eV
  • analýza směsí organických látek (GC/MS)
  • analýza směsí organických látek (RP HPLC/MS, RP HPLC/UV-DAD) – po dohodě
  • kvantitativní analýzy, screening polutantů v komplexních matricích – po dohodě
  • vývoj GC/MS a LC/MS metod (po dohodě), včetně prekoncentračních technik

 

Výsledky analýz

Výsledky analýz jsou obvykle zasílány na e-mail zadavatele v elektronické formě (hmotnostní spektra a další informace ve formátu pdf popř. vloženy ve formě obrázkového souboru (jpeg, meta file atd.) do souboru MS Word nebo MS Excel. Datové soubory včetně přístrojových dat  jsou v laboratoři archivovány obvykle po dobu 3 let, pro individuální vyhodnocování jsou přístrojová data poskytována po dohodě.

 

Speciální analýzy

Analýzy VOC (těkavých organických látek) v ovzduší a plynech

Analýzy VOC emitovaných z materiálů 

k dispozici on-line spojení kanystrový systém - GC/MS a tepelná desorpce (TD) – GC/MS

  • odběr vzorků do Tedlarových vaků
  • odběr vzorků na tepelně desorbované trubičky (např. TENAX)
  • odběr vzorků na rozpouštědlem desorbované trubičky (např. ORBO)
  • odběr vzorků na speciální media (např. DNPH)
  • odběr vzorků do kanystrů

originál

 originál

[iduzel] => 21841 [canonical_url] => //clab.vscht.cz/ms [skupina_www] => Array ( ) [url] => /ms [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [25038] => stdClass Object ( [nazev] => Laboratoř organické elementární analýzy [seo_title] => Laboratoř OEA [seo_desc] => [autor] => [autor_email] => [obsah] =>

Typy analýz a jejich omezení

Laboratoř se zabývá stanovením obsahu (hm. %) jednotlivých prvků zejména C, H, N, S, Cl, I, Br, P v dodaných pevných či kapalných vzorcích. Všechny metody, které používáme, jsou založeny na spálení vzorku v proudu kyslíku za vysoké teploty. Vzniklé spaliny jsou pak různými metodami detekovány.
Tyto metody jsou vhodné jak pro čisté organické látky tak i pro vzorky půd, písků, paliv různého původu, rostlinných materiálů a některé anorganické vzorky apod.
Vždy dojde ke spálení vzorku, tedy analýza je desktruktivní.

Jednotlivé typy analýz

Stanovení obsahu C, H, N, S

Pro stanovení obsahu C, H, N, S je používán přístroj Elementar Vario Cube s TCD detekcí, resp. IR detektorem. Toto uspořádání umožňuje stanovení i stopových (pod 100 ppm) množství síry z jedné navážky.
Princip metody:
Základní princip kvantitativního stanovení CHNS je spálení vzorku (organického a mnohých anorganických) pevného i kapalného v proudu kyslíku za vysokých teplot (až 1200°C). Plynné produkty spálení (N2, CO2, H2O a SO2) jsou vyčištěny, odděleny na jednotlivé složky a analyzovány na TCD detektoru.
Omezení:
Obsahuje-li vzorek fluor, nelze u něj stanovit obsah síry a pro tyto vzorky se používá přístroj Elementar EL III, kde je výsledkem obsah C, H, N, S.

Stanovení stopových a semi-stopových obsahů halogenů a síry

Vybavení laboratoře umožňuje i stanovení velmi nízkých obsahů halogenů ve vzorku, kromě fluoru, a velmi nízkých obsahů síry ve vzorcích. Tyto analýzy se provádějí na přístroji Mitsubishi TOX 100.
Princip metody:
Stanovení nízkých obsahů spalitelných halogenů, zejména chloru:
      Vzorek je spálen v atmosféře kyslík/argon. Vzniklý HCl je veden do titrační cely, kde je       automaticky titrován Ag+, které jsou coulometricky generovány. 

Stanovení nízkých obsahů spalitelné síry:
      Vzorek je spálen v atmosféře kyslík/argon. Vzniklý SO2 je veden do titrační cely, kde je       automaticky titrován I3-.
Omezení:
Stanovení stopového obsahu síry ve vzorku vyžaduje, aby vzorek neobsahoval dusík a halogeny.
Stanovení stopového obsahu halogenů (kromě fluoru) vyžaduje, aby vzorek obsahoval pod 10% S i pod 10% N. Z tohoto omezení vyplývá, že u neznámého vzorku je třeba jako první krok provést analýzu C,H,N,S.

Stanovení obsahu Cl, I, Br

Pro stanovení obsahu Cl, I, Br jsou použity klasické argentometrické analýzy upravené pro malé navážky vzorků. Navážky na jednotlivé analýzy se liší podle předpokládaného obsahu stanovovaného vzorku.
Princip metody:
Vzorek je spálen v Erlenmayerově baňce v nadbytku kyslíku. Spaliny se absorbují do pracovního roztoku H2O2, který se pak kvantitativně převede do titrační baňky. Obsah halogenů se stanoví potenciometrickou titrací za použití odměrného roztoku dusičnanu stříbrného.
Omezení:
Vzorek musí být pevná a snadno spalitelná látka. Je-li obsah stanovovaného prvku do 5%, je potřeba, abyste nám dodali minimálně 100 mg vzorku na jednu analýzu. V případě, že očekávaný obsah prvku je vyšší než 5%, postačuje 20 mg vzorku na jednu analýzu.

 Stanovení obsahu fosforu

Fosfor se stanovuje upravenou komplexometrickou odměrnou metodou.
Princip metody:
Vzorek je spálen v atmosféře kyslíku, mineralizován a nepřímou komplexometrickou titrací stanoven obsah fosforu.
Omezení:
Vzorek nesmí obsahovat kovy alkalických zemin. Ke stanovení nízkého obsahu fosforu je potřeba alespoň 800 mg vzorku na jednu analýzu.

Výsledky


Zákazník by měl mít na paměti, že výsledky organické elementární analýzy jsou též ovlivněny vlhkostí analyzovaného vzorku i přítomností zbytkových rozpouštědel.
Výsledky jsou zákazníkovi zasílány elektronickou poštou, na vyžádání v písemné formě.

Stanovení obsahu C, H, N, S
 Obsahuje-li vzorek anorganický uhlík (CO32- nebo HCO3-) nebo anorganickou síru (zejména S2- , SO32-, HSO3- a některé SO42-, HSO4- ) pak za podmínek analýzy dojde i ke stanovení těchto prvků, nelze odlišit organicky vázané prvky od anorganicky vázaných.

[iduzel] => 25038 [canonical_url] => //clab.vscht.cz/oea [skupina_www] => Array ( ) [url] => /oea [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [24887] => stdClass Object ( [nazev] => Laboratoř rentgenové difraktometrie a spektrometrie [seo_title] => Laboratoř RTG [seo_desc] => [autor] => [autor_email] => [obsah] =>

Laboratoř provádí stanovení fázového složení metodou XRD(X-Ray Diffraction) fázové analýzy spočívající v měření a vyhodnocování difrakčních záznamů a stanovení prvkového složení metodou XRF (X-Ray fluorescence) prvkové analýzy vzorků dodaných ze školních laboratoří, ale i z pracovišť mimo školu. Kromě základních servisních analýz je zde možné provést také nestandardní nebo složitější experimenty, včetně jejich vyhodnocení. Současně s tím v této laboratoři probíhá vědecká a pedagogická činnost, která zahrnuje úzkou spolupráci s dalšími pracovišti na VŠCHT či vědeckými pracovišti i mimo ČR.

Metoda rentgenové práškové difrakce (mineralogická analýza, prášková difrakce) je určena především na měření pevných vzorků (speciální oblastí je možnost studia transformací z pevné do kapalné fáze za vysokých teplot) a je schopna stanovit, zda je vzorek amorfní či krystalický. V případě krystalických vzorků je schopna stanovit přítomnost krystalických fází porovnáním naměřených dat (difraktogramy, powder patterns) s databází PDF-4+ (Powder diffraction file-hlavně anorganika), PDF-4/Organics(organika)

Nejširší využití XRD fázová analýza nalézá v charakterizaci pevných látek, a to jak anorganického, tak i organického původu. Laboratoř se zabývá všemi problémy chemie a chemické technologie mající souvislost s pevnou fází, reakcemi v   pevné fázi a heterogenními systémy. Poskytuje informace o průběhu reakce v pevné fázi, o kvalitativním a kvantitativním fázovém složení pevných látek, o krystalických modificích téže sloučeniny, o velikosti elementárních krystalitů(rozsah 1nm-500nm), o stupni krystalinity pevných látek, o strukturní dokonalosti, o textuře a struktuře krystalických materiálů částečně i polymerů. Speciální oblastí je řešení molekulové a krystalové struktury organických látek z monokrystalu či polykrystalického materiálu či vysokoteplotní studium materiálů v rozsahu teplot od 20-1400 oC.

RTG prášková difrakce se stala nepostradatelnou metodou ke studiu korozních procesů, syntézy a studia polovodičových a keramických materiálů, katalyzátoru a farmaceutických preparátů. V případě RTG práškové difrakce se nejedná se o stopovou analýzu, minimální stanovitelná koncentrace krystalické fáze je cca 0.1 hm.%. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít.

V případě XRD mikrodifrakční fázové analýzy se jedná se o analýzu materiálu o množství menším jak 10mg nebo z bodu o velikosti 0.1-2 mm. Lze analyzovat kompaktní vzorky různě křivých tvarů. Nejedná se o stopovou analýzu, minimální stanovitelná koncentrace krystalické fáze je cca 2 hm. %. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však nedestruktivní a vzorek je možné po analýze dále použít.

Využití XRF metody spočívá ve standardním kvantitativním stanovení prvků F-U v pevných i kapalných vzorkách. Koncentrační rozsah měřených prvků se pohybuje v rozmezí 0.0001 hm.% (1ppm) -100 hm. %. (Doporučená množství vzorku pro analýzu jsou uvedena v sekci Servis.) Měření je však obvykle nedestruktivní(pozor sklo tmavne!) a vzorek je možné po analýze dále použít. Nejrozšířenější aplikací je stanovování prvkového složení skel, jílových materiálů, cementů a kovových slitin.

V případě RTG monokrystalové difrakce se jedná o stanovení struktury malých organických molekul (do 100 nevodíkových atomů v nezávislé části). K měření je nutný monokrystal jehož velikost by se měla pohybovat v rozmezích 100-1000μm v závislosti na složení a velikosti molekuly. V souvislosti s monokrystalovou difrakcí se laboratoř zabývá metodikou přípravy monokrystalů organických látek. Pro pěstování monokrystalu organické látky z roztoku je požadováno cca 50 mg pevného vzorku. Předpokladem úspěšného měření je jeho maximální čistota a dostupné informace o rozpustnosti vzorku v různých rozpouštědlech nebo v jejich soustavách.

Elektronová mikrosonda s rozlišením podle vlnové disperze (WDS) je nepostradatelnou metodou při zjištění přesného bodového chemického složení, kde velikost bodu se pohybuje v jednotkách mikronů. Největších použití dosahuje v geologických vědách, mineralogii a petrologii a rovněž v materiálových vědách. Všude tam, kde je potřeba znát přesné kvantitativní chemické složení bodů na úrovni mikronů, nelze použít žádnou z metod přesné chemické analýzy průměrného složení vzorku (RFA, chemické analytické metody a další), ale právě elektronovou mikrosondu. Ta je v principu elektronovým mikroskopem, od kterého se liší především systémem detekce. Elektronové mikroskopy pracují převážně s energiově disperzním rozlišením - a také počtem krystalových spektrometrů umožňující současné měření více prvků, programováním analýz a množstvím měřených vzorků (počtem vzorků měřených během jednoho měření). Vzorek musí být před měřením zalit do pryskyřice do tablety o průměru 25 mm, naleštěn a před měřením pokoven, nejčastěji uhlíkem. Stejně jako o elektronového mikroskopu lze pozorovat povrch v sekundárních elektronech a fázová rozhraní v odražených elektronech.

 

[urlnadstranka] => [iduzel] => 24887 [canonical_url] => [skupina_www] => Array ( ) [url] => /rtg [sablona] => stdClass Object ( [class] => stranka_submenu [html] => [css] => [js] => [autonomni] => 1 ) ) [21566] => stdClass Object ( [nazev] => Pedagogická činnost [seo_title] => Pedagogická činnost [seo_desc] => [autor] => [autor_email] => [obsah] =>

Pracovnící Centrálních laboratoří se podílí na výuce předmětů magisterského a doktorského studia. Studenti při výuce získávají rovněž praktické zkušenosti s moderními instrumentálními metodami pro celou řadu vědeckých i průmyslových aplikací.

Příklady předmětů magisterského studia

  • NMR pro studium přírodních látek (kód N342010)
  • Metody určování struktury látek (kód  N108019)
  • Molekulové modelování a bioinformatika (kód N320019)
  • Analytické metody v památkové péči  (kód N148006)
  • Metody průzkumu památek (kód N148009)
  • Seminář a laboratoř analytiky prostředí (kód N218025)
  • Analýza uhlovodíků a životní prostředí (kód N215020)

Příklady předmětů doktorského studia

  • Vybrané metody instrumentální analýzy  (kód D215006)
  • NMR spektroskopie pro studium přírodních látek (kód D342007)
  • RTG fázová analýza (kód D108004)

Podrobnější informace naleznete na webových stránkách

jednolivých laboratoří Centrálních laboratoří

Studentského informačního systému VŠCHT

[iduzel] => 21566 [canonical_url] => //clab.vscht.cz/pedagogicke-cinnost [skupina_www] => Array ( ) [url] => /pedagogicke-cinnost [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 20080 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Laboratoř NMR spektroskopie
    [seo_title] => Výuka
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

Výuka NMR spektroskopie

Laboratoř NMR spektroskopie zajišťuje výuku několika specializačních předmětů na VŠCHT Praha. Podrobnější informace lze nalézt na následujících stránkách jednotlivých předmětů.

NMR spektroskopie pro studium přírodních látek 
Metody určování struktury látek – NMR spektroskopie 
Moderní instrumentální metody strukturní biologie 


Podílíme se rovněž na výuce a organizaci dalších kurzů NMR spektroskopie. Na Matematicko-fyzikální fakultě Karlovy University je to každoroční kurz Moderní problémy NMR spektroskopie v Peci pod Sněžkou.

Princip metody

Nukleární magnetická rezonance (NMR) je jev založený na interakci magneticky aktivních jader (mají nenulový jaderný spin, např. 1H, 13C,...) umístěných v silném magnetickém poli s elektromagnetickým zářením v oblasti radiových vln. Vlivem chemického okolí a vzájemných interakcí sledovaných jader dochází k charakteristickým posunům a štěpením jejich signálů ve spektru. Výsledná spektra je potom možné interpretovat ve smyslu struktury sledované molekuly nebo jejích částí.

Podrobnosti v českém jazyce naleznete na stránkách jednotlivých předmětů (viz výše). V anglickém jazyce viz např.:

NMR spektroskopie přístupná každému...

šířka 450px

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'clab.vscht.cz' [newurl_jazyk] => 'cs' [newurl_akce] => '/nmr/vyuka' [newurl_iduzel] => 27682 [newurl_path] => 1/20076/20077/20080/27634/27682 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 27682 [platne_od] => 12.02.2020 12:41:00 [zmeneno_cas] => 12.02.2020 12:41:29.623537 [zmeneno_uzivatel_jmeno] => Jan Prchal [canonical_url] => [idvazba] => 35204 [cms_time] => 1711719010 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [27695] => stdClass Object ( [nazev] => Informace [barva_pozadi] => cervena [uslideru] => false [text] => [poduzel] => Array ( ) [iduzel] => 27695 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => infobox [html] => [css] => [js] => [autonomni] => 0 ) ) [27686] => stdClass Object ( [nazev] => Metody určování struktury látek – NMR spektroskopie [seo_title] => Metody určování struktury látek [seo_desc] => [autor] => [autor_email] => [obsah] =>

Výuka je jednou z pěti volitelných součástí modulového předmětu Metody určování struktury látek (N108019), který probíhá v letním semestru v rozsahu 3 hodin týdně (2 + 1) a je zakončen zkouškou z každého modulu.

S případnými dotazy se na nás můžete obrátit e-mailem (richard.hrabal@vscht.cz) nebo telefonicky (linka 3805); web http://clab.vscht.cz/nmr.

Přednášející:
prof. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD.

Přednášky ve formátu pdf naleznete na e-lerningovém portálu.

Naším záměrem je umožnit vám lepší orientaci v právě probírané problematice a zjednodušit vytváření poznámek (nebude nutné utrácet čas opisováním prezentací...). Během procvičování interpretace NMR spekter a analýzy složitějších problémů se bez vlastního výtisku spekter neobejdete.

Základní pojmy NMR spektroskopie (podstata jevu, NMR parametry...).
Interpretace NMR spekter – využití základních NMR parametrů pro přiřazení 1H NMR spekter.

Hrabal
Dvořáková

Vznik NMR signálu a jeho zpracování, základní pulsní sekvence (spinové echo, přenos polarizace...).

Diastereotopicita, posunová činidla. Interpretace 13C NMR spekter.

Hrabal
Dvořáková

Dvou a vícedimensionální NMR spektroskopie (homonukleární versus heteronukleární korelační experimenty, klasická versus obrácená detekce, spin-lock).

Přiřazení signálů složitejších molekul, využití dvoudimensionálních experimentů (COSY, HMQC, HMBC). Výpočty spekter, využití databází.

Hrabal
Dvořáková

Jaderná spinová relaxace – zavedení, metody měření, relaxační mechanismy, nukleární Overhauserův efekt, příklad měření dynamiky molekuly.
Chemická výměna – vliv na tvar NMR spektra. Metody měření rychlosti chemické výměny – dynamická NMR, výměnná spektrokopie (EXSY) a příklady.

Lang

Nukleární Overhauserův efekt princip měření a jeho využití (diferenční NOE, NOESY, ROESY).

Význam interakční konstanty, Karplusova rovnice, relativní konfigurace na šestičlenných kruzích. Konformace furanosového kruhu – výpočet fázového úhlu a puckering amplitudy. TOCSY.

 Dvořáková
Soubory v PDF formátu je možné prohlížet například prostřednictvím programu Adobe Reader.
 

Příklady k procvičování

Doporučená literatura:
H. Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Wiley-Vch 1998
J.K.M. Sanders
B.K. Hunter
Modern NMR Spectroscopy – a guide for chemists Oxford University Press 1994
H. Gunther NMR Spectroscopy John Wiley 1995
R.R. Ernst,
G. Bodenhausen
a A. Wokaun
Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford University Press 1987
D. Adams The Hitch Hiker's Guide to the Galaxy and The Restaurant at the End of the Universe Pan Books 1981, 1982

[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => Array ( ) [iduzel] => 27686 [canonical_url] => [skupina_www] => Array ( ) [url] => /nmr/vyuka/struktura [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [27688] => stdClass Object ( [nazev] => Moderní instrumentální metody strukturní biologie [seo_title] => Strukturní biologie [seo_desc] => [autor] => [autor_email] => [obsah] =>

Předmět je zakončen klasifikovaným zápočtem.

Přednášející

prof. Ing. Richard Hrabal, CSc. VŠCHT Praha, místnost A42
tel. 220 443 805, email: hrabalrvscht.cz
Ing. Jiří Šantrůček, PhD. VŠCHT Praha, místnost BS91
tel. 220 443 216 email: jiri.santrucekvscht.cz
doc. Ing. Vojtěch Spiwok, Ph.D. VŠCHT Praha, místnost B211
tel. 220 443 028, email: spiwokvvscht.cz
Ing. Pavel Ulbrich, PhD. VŠCHT Praha, místnost B239
tel. 220 445 168, email: pavel.ulbrichvscht.cz
Ing. Jan Prchal, PhD. VŠCHT Praha, místnost A42
tel. 220 443 840, email: jan.prchalvscht.cz
Ing. Silvie Rimpelová, PhD. VŠCHT Praha, místnost B22
tel. 220 443 460, email: rimpelosvscht.cz
PharmDr. Jindřiška Angelini, PhD. VŠCHT Praha, místnost B232d
tel. 220 443 017, email: jinmatcentrum.cz

Seznam přednášek

Přednášky jsou přístupné na e-learningovém portálu VŠCHT. Pokud jste studentem zapsaným do tohoto předmětu a nemáte k němu v e-learningu přístup, tak mne kontaktuje.

 

 


Soubory v PDF formátu je možné prohlížet například prostřednictvím programu Adobe Reader.
Soubory ve formátu PPT je možné prohlížet například prostřednictvím programu PowerPoint Viewer.
[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [44290] => stdClass Object ( [nazev] => Materiály X-Ray [seo_title] => Materiály X-Ray [seo_desc] => [autor] => [autor_email] => [obsah] =>

Studijní materiály X-RAY

[urlnadstranka] => [iduzel] => 44290 [canonical_url] => [skupina_www] => Array ( ) [url] => /nmr/vyuka/struktbio/44290 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 27688 [canonical_url] => [skupina_www] => Array ( ) [url] => /nmr/vyuka/struktbio [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [27683] => stdClass Object ( [nazev] => NMR spektroskopie pro studium přírodních látek [seo_title] => NMR spektroskopie pro studium přírodních látek [seo_desc] => [autor] => [autor_email] => [obsah] =>

Předmět (N342010) je určen pro studenty magisterského a doktorského studijního programu. Kurz probíhá v letním semestru v rozsahu 2 hodin týdně a je zakončen klasifikovaným zápočtem (popř. zkouškou pro doktorandy).

S případnými dotazy se na nás můžete obrátit e-mailem (richard.hrabal@vscht.cz) nebo telefonicky (linka 3805); web http://clab.vscht.cz/nmr.

Přednášející:
prof. Ing. Richard Hrabal, CSc. doc. RNDr. Jan Lang, PhD.
Ing. Hana Dvořáková, CSc. Ing. Jan Prchal, PhD.

Zadání projektů, přednášky a další příklady k procičování naleznete na e-lerningovém portálu

Naším záměrem je umožnit vám lepší orientaci v právě probírané problematice a zjednodušit vytváření poznámek (nebude nutné utrácet čas opisováním prezentací...). Během procvičování interpretace NMR spekter a analýzy složitějších problémů se bez vlastního výtisku spekter neobejdete.

Základní pojmy NMR spektroskopie (podstata jevu, NMR parametry...). Hrabal
Vznik NMR signálu a jeho zpracování, základní pulsní sekvence (spinové echo, přenos polarizace...). Hrabal
Dvou a vícedimensionální NMR spektroskopie (homonukleární versus heteronukleární korelační experimenty, klasická versus obrácená detekce, spin-lock). Hrabal
Jaderná spinová relaxace – zavedení, metody měření, relaxační mechanismy, nukleární Overhauserův efekt, příklad měření dynamiky molekuly. Lang
Interpretace NMR spekter – využití základních NMR parametrů pro přiřazení 1H NMR spekter. Dvořáková
Interpretace 13C NMR spekter. Výpočty spekter, využití databází. Přiřazení signálů složitejších molekul, využití dvoudimensionálních experimentů (COSY, HMQC, HMBC). Dvořáková
Nukleární Overhauserův efekt – princip měření a jeho využití (diferenční NOE, NOESY, ROESY). TOCSY. Dvořáková

Význam interakční konstanty, Karplusova rovnice, relativní konfigurace na šestičlenných kruzích. Konformace furanosového kruhu – výpočet fázového úhlu a puckering amplitudy.

Zadání semestrálního projektu.

Dvořáková

Chemická výměna – vliv na tvar NMR spektra. Metody měření rychlosti chemické výměny – dynamická NMR, výměnná spektrokopie (EXSY) a příklady.

Lang

NMR spektroskopie biologicky aktivních systémů (struktura a dynamika proteinů a jejich komplexů).

Kvantitativní NMR spektroskopie, NMR a forenzní analýza, ověření pravosti původu/složení potravin měřením zastoupení izotopů (SNIF NMR).

 Prchal

NMR spektroskopie v pevné fázi. Tvar spektra, kros-polarizace, rotace pod magickým úhlem, příklady.

NMR zobrazování, využití v medicíně. Kódování prostorové informace do NMR signálu, základní pulzní sekvence, kontrast, funkční zobrazování, in vivo spektroskopie.

Lang
Soubory v PDF formátu je možné prohlížet například prostřednictvím programu Adobe Reader.
Příklady k procvičování

Doporučená literatura:
H. Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Wiley-Vch 1998
J.K.M. Sanders
B.K. Hunter
Modern NMR Spectroscopy – a guide for chemists Oxford University Press 1994
H. Gunther NMR Spectroscopy John Wiley 1995
R.R. Ernst,
G. Bodenhausen
a A. Wokaun
Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford University Press 1987
D. Adams The Hitch Hiker's Guide to the Galaxy and The Restaurant at the End of the Universe Pan Books 1981, 1982
[urlnadstranka] => [ogobrazek] => [pozadi] => [poduzel] => stdClass Object ( [27684] => stdClass Object ( [nazev] => Příklady [seo_title] => Příklady [seo_desc] => [autor] => [autor_email] => [obsah] =>
Na této stránce se nalézají příklady k procvičování interpretace 1H a 13C NMR spekter. Vaším úkolem je určit strukturu látky, znáte-li její sumární vzorec a 1H, případně i 13C NMR spektrum. Úlohy jsou rozděleny podle náročnosti do dvou řad ‒ jednodušší (P) a obtížnější (Q).

Správné řešení úloh si můžete ověřit vždy po přednášce kurzu NMR u některého z vyučujících.


P.pdf Q.pdf  

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
 

Příklady jsou zde uvedeny souhrnně ve formátu pdf a jednotlivě jako obrázky ve formátu GIF.

Poznámka: Z důvodu rozlišení jsou obrázky GIF veliké. Nezapomeňte proto případně posunout zobrazení i "za roh" :-)


  Zpět na hlavní stránku předmětu.

[iduzel] => 27684 [canonical_url] => //clab.vscht.cz/nmr/vyuka/nmr_pl/priklady [skupina_www] => Array ( ) [url] => /nmr/vyuka/nmr_pl/priklady [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 27683 [canonical_url] => [skupina_www] => Array ( ) [url] => /nmr/vyuka/nmr_pl [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )


VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi